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Abstract
We show that the standard treatment of deep inelastic neutron scattering from molecules
implicitly assumes the adiabatic approximation for both initial and final states. Since the use of
this approximation in the aforementioned scattering regime has recently been questioned, we
propose a calculation scheme free from the adiabatic assumption in the final molecular state.
This scheme generalizes the Gersch–Rodriguez–Smith approach, explicitly including the
electronic degrees of freedom and the Coulomb interaction, and provides analytical formulae
for the asymptotic response function and for the first final state effect correction. A practical
calculation is performed on the simple H2 molecule. Results show an asymptotic term very
close to the standard one, but a first final state effect term (that is proportional to the inverse of
the momentum transfer) exhibiting large discrepancies with respect to its equivalent derived
from a semi-empirical internuclear potential.

1. Introduction

Deep inelastic neutron scattering is a spectroscopic technique
able to probe atomic momentum distributions in condensed
matter [1]. It is based on the so-called impulsive approximation
(IA) [2], where the neutron–nucleus scattering time becomes
so short (as the energy transfer grows) that the recoil of the
hit nucleus can be reasonably assumed rid of interactions
with neighbour particles. Considering the formal analogy
with the well-known Compton scattering (i.e. x-ray photons
inelastically deflected by core electrons [3]), it is quite common
to use the term neutron Compton scattering (NCS) too.
However, despite its simplicity, NCS is still affected by the
unsolved problem of the anomalous deficit of proton cross-
section in various compounds [4], which seems to resist
several theoretical efforts [5] and experimental tests [6]. The
anomalous cross-section deficit and its potentially disruptive
effect on the standard neutron scattering theory [7] are not
a real obstacle to the use of NCS as a routine technique in
molecular applications. As a matter of fact, a reduction in the
intensity of the proton recoil peak appears to be a quantitative

phenomenon directly affecting the absolute measurements
only, and is drawn into the domain of standard spectroscopy
merely by comparing recoil peaks from different elements
or isotopes. Nevertheless the various attempts to provide
a sound explanation of the aforementioned proton anomaly
forced a few scientists to have a closer look at NCS from
molecular systems, trying to overcome the usual ‘spring-
and-ball’ approach [8] (dating back to 1967), which is a
simple extension of the treatment employed in vibrational
spectroscopy [9] and does not capture the full potential of a
ultra-fast technique like NCS. In this way the situation has
recently started to change: new studies have started to consider
various unusual aspects of NCS, the most relevant of which
is surely the role of the electronic dynamics beyond the limit
of the Born–Oppenheimer approximation [10] and its possible
link with the proton cross-section deficit.

The situation in NCS just described prompted the authors
of the present study to explore the general role of the electronic
degrees of freedom in deep inelastic neutron scattering
from molecular systems, achieving new and more general
expressions. Subsequently a toy-model (namely a single H2
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molecule) will be presented. Actually this molecule exhibits
the simplest possible structure allowing straightforward and
reliable simulations, but is already interesting in NCS as
proved by the abundant literature on it (mentioned in [1]).
Consequently, the rest of the work will be organized as
follows: section 2 will contain the theory of the electronic
degrees of freedom in neutron Compton scattering from
molecules. Section 3 will present the calculations worked out
implementing the equations of the previous section in the case
of an isolated H2 molecule, and finally section 4 will deal with
the discussion of the obtained results and the conclusions.

2. Electronic degrees of freedom and neutron
Compton scattering

In the vast literature on condensed matter, quantum mechanical
calculations of thermal neutron scattering from nuclei (not
involving magnetic structures and excitations) are practically
always accomplished in the framework of the well-known
adiabatic approximation of the total system wavefunction,
� [11]. If we consider a molecule composed of N nuclei and n
electrons, represented by their position operators �R1, . . . , �RN

and �r1, . . . , �rn , respectively, then crudely assuming the
adiabatic approximation (and paying no attention to the particle
spins), one writes

�k( �R1, �R2, . . . , �RN , �r1, �r2, . . . , �rn)

= χ(e)v (
�R1, �R2, . . . , �RN )

× φe(�r1, �r2, . . . , �rn; �R1, �R2, . . . , �RN ), (1)

where φe depends on �R1, . . . , �RN only parametrically, as
represented by the semi-colon: φe(. . . ; �R1, �R2, . . . , �RN ).
This implies that the two following independent ortho-
normalization rules apply:

〈φe′(�r1, �r2, . . . , �rn; �R1, �R2, . . . , �RN )

× |φe(�r1, �r2, . . . , �rn; �R1, �R2, . . . , �RN )〉�r1,�r2,...,�rn = δe,e′,

(2)

and

〈χ(e)v′ ( �R1, �R2, . . . , �RN )|χ(e)v ( �R1, �R2, . . . , �RN )〉 �R1, �R2,..., �RN

= δv,v′ , (3)

where the external coordinates specify the integration variables
and will often be dropped in what follows. If the tiny electron–
neutron cross-section [12] is neglected (σn−e ∼ 10−35 m2), the
possibility of electronic excitation through neutron scattering
from the i th nucleus is controlled by the matrix elements
M (i)

k′←k(
�Q) (with �Q being the wavevector transfer) of this sort

M (i)
k′←k(

�Q) = 〈�k′ | exp(i �Q · �Ri )|�k〉, (4)

which, in the adiabatic approximation, reads

M (i)
e′,v′←e,v(

�Q) = 〈χ(e′)
v′ φe′ | exp(i �Q · �Ri )|χ(e)v φe〉

= δe,e′ 〈χ(e)v′ | exp(i �Q · �Ri )|χ(e)v 〉, (5)

meaning that no electronic excitation from e to e′ �= e is
possible via neutron scattering from nuclei. So the possibility
to excite electronic states through neutron scattering has to

be related to a hypothetical non-adiabatic nature of the initial
and/or final states of the molecule hit by neutrons.

Naturally in case of low temperature (T ) and modest
values of the energy transferred from the neutron to the
system (h̄ω), the number of initial (k) and final (k ′) states
relevant in the scattering process is small. In such a situation
it is, at least conceptually, possible to verify the well-
known criterion for the adiabatic approximation to hold for
each pair of initial and final states. Namely the adiabatic
approximation can be trusted whenever the various potential
energy surfaces, We( �R1, �R2, . . . , �RN ) (obtained as eigenvalues
from the solution of the electronic Schrödinger equation for the
eigenstates φe) are well separated:

We=0( �R1, �R2, . . . , �RN ) 	 We=1( �R1, �R2, . . . , �RN ) 	 · · ·
(6)

for all the �R1, . . . , �RN values explored by the nuclei in the
molecule. However, when h̄ω and Q increase (for example as
in NCS), the number of final states involved in the scattering
process grows very rapidly. One has to consider all the k ′ states
whose energies Ek′ roughly satisfy the inequation:

Ek + h̄2 Q2

2Mi
− 2

(
2h̄2 Q2

3Mi
〈Ti 〉

)1/2

< Ek′

< Ek + h̄2 Q2

2Mi
+ 2

(
2h̄2 Q2

3Mi
〈Ti 〉

)1/2

, (7)

with 〈Ti 〉 and Mi being the i th-nucleus mean kinetic energy
and mass, respectively. Thus the most common situation in
a typical NCS experiment from molecules is the following:
given the relatively low temperature of the measurement the
relevant initial states �k are often only one, which coincides
with the system ground state �0 and is generally fairly well
described by the adiabatic approximation �0 = χ

(e=0)
v=0 φe=0.

On the contrary, the relevant final states �k′ are numerous
and practically unknown, so that the validity of the adiabatic
approximation for them becomes highly disputable, especially
when the scattering time [13] τs = π( 2Q2

3Mi
〈Ti 〉)−1/2, shrinks so

much to come close to the typical electronic ‘rearrangement’
time (i.e. 10−18 s). This is a crucial point since the large
majority of the NCS work on molecular systems done so far
is just based on the adiabaticity of �k′ in an implicit way.

In order to cope with this problem let us focus on
the scattering (self) from a proton belonging to the target-
molecule (kept at T = 0) and labelled by ‘1’. It is
worthwhile to introduce the West-transformed intermediate
scattering function, F̃(s, �Q):

F̃(s, �Q) = exp

(
−i

s Q

2

)
Is( �Q, t), (8)

where s is the proton mean travelled path, s = h̄Q
M1

t , and

Is( �Q, t) is the usual intermediate scattering function (self) as
defined in the literature [14], depending on time t . It is worth
noting that in the present high-Q regime all the distinct terms
in the scattering law can be safely neglected (i.e. the incoherent
approximation [15] holds), so that the total intermediate
scattering function and its self-counterpart actually coincide.
Following a well-known standard procedure [16], it is possible
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to cast Is( �Q, t) in such a way to get rid of the final molecular
states:

Is( �Q, t) = 〈�0| exp[ih̄−1 H ( �P1 + h̄ �Q, �P2 . . .)t]
× exp[−ih̄−1 H ( �P1, �P2 . . .)t]|�0〉, (9)

where H is full molecular Hamiltonian (decomposed in
nuclear kinetic TN, electronic kinetic Te, and potential V
terms):

H ( �P1, . . . , �p1, . . . , �R1, . . . , �r1, . . .) = TN( �P1, . . . , �PN )

+ Te( �p1, . . . , �pn)+ V ( �R1, . . . , �RN , �r1, . . . , �rn). (10)

In the two equations above the usual notation has been
employed: �Pi is the momentum of the i th nucleus, while �p j

that of the j th electron, having mass me and charge e. In
addition, Zi and ε0 stand for the atomic number of the i th
nucleus and the vacuum dielectric constant, respectively. From
equation (10) one easily derives

H ( �P1 + h̄ �Q, �P2 . . .) = H ( �P1, �P2 . . .)+ h̄2 �Q · �P1

M1
+ h̄2 Q2

2M1
,

(11)
from which, since �Q is only a c-number (vector), the following
expression for F̃(s, �Q) can be worked out:

F̃(s, �Q) = 〈�0| exp

[
i
M1s

h̄2 Q
H ( �P1, �P2 . . .)+ is Q̂ · �P1

]

× exp

[
−i

M1s

h̄2 Q
H ( �P1, �P2 . . .)

]
|�0〉, (12)

where Q̂ = �Q/Q. Following [17] and developing F̃(s, �Q) in
a power series of Q−1:

F̃(s, �Q) =
∞∑

k=0

(
M1

h̄2 Q

)k

F̃k(s, Q̂), (13)

one arrives to a simple expression for the asymptotic term,
F̃0(s, Q̂), i.e. the only surviving term in the Q−1 series as Q
grows to infinite:

F̃0(s, Q̂) = 〈�0|eis Q̂· �P1 |�0〉 = 〈�0( �R1, �R2 . . . , �r1, . . .)|
× �0( �R1 + s Q̂, �R2 . . . , �r1, . . .)〉. (14)

So far our treatment has been exact, since the Coulomb
potential is Fourier transformable and so the expansion of
equation (13) (named GRS expansion) is fully justified [17].
However, if the adiabatic approximation is now assumed for
�0 only (where it can be verified), one finally writes the
asymptotic term in a more amenable and computable way:

F̃0(s, Q̂) =
∫

d �R1 · · ·
∫

d �RN χ
(0) ∗
0 ( �R1, �R2 . . .)

× χ
(0)
0 ( �R1 + s Q̂, �R2 . . .)

∫
d�r1 · · ·

∫
d�rn φ

∗
0 (�r1, �r2 . . . ;

× �R1, �R2 . . .)φ0(�r1, �r2 . . . ; �R1 + s Q̂, �R2 . . .). (15)

Similarly to equation (14), but using a longer algebraic
treatment [17], one can derive an expression for F̃1(s, Q̂):

F̃1(s, Q̂) = i〈�0|
∫ s

0
dς [V ( �R1 + ς Q̂, �R2 . . . , �r1, �r2 . . .)

− V ( �R1 + s Q̂, �R2 . . . , �r1, �r2 . . .)]eis Q̂· �P1 |�0〉, (16)

where the full Coulombian potential energy, V , can be safely
replaced by V1, its component explicitly depending on the 1st-
nucleus position (see equation (10)):

V1( �R1, �R2 . . . , �r1, �r2 . . .) =
∑
i>1

Z1 Zi e2

4πε0| �R1 − �Ri |
−

∑
j

Z1 e2

4πε0| �R1 − �r j |
. (17)

This replacement is exact since the Coulomb potential is pair-
wise additive and all the coordinate operators are evaluated
at the same time (t = 0) and so they commute. It is now
worth comparing equations (14) and (16) to the respective
standard expressions used in the NCS theory [18] and obtained
forbidding any electronic excitation in the scattering process,
i.e. assuming the adiabatic approximation for all the final
molecular states (as in equation (5)):

F̃ (st)
0 (s, Q̂) = 〈χ(0)0 |eis Q̂· �P1 |χ(0)0 〉
=

∫
d �R1 · · ·

∫
d �RN χ

(0) ∗
0 ( �R1, �R2 . . .)

× χ
(0)
0 ( �R1 + s Q̂, �R2 . . .); (18)

F̃ (st)
1 (s, Q̂) = i〈χ(0)0 |

∫ s

0
dς [VN( �R1 + ς Q̂, �R2 . . .)

− VN ( �R1 + s Q̂, �R2 . . .)]eis Q̂· �P1 |χ(0)0 〉, (19)

where VN ( �R1, �R2 . . .) coincides with the potential en-
ergy surfaces of the electronic ground state φ0, namely
We=0( �R1, �R2 . . .), plus the so-called adiabatic correction,
H ′

0,0(
�R1, �R2 . . .) [19]:

H ′
0,0(

�R1, �R2 . . .) =
∫

d�r1 · · ·

×
∫

d�rn φ
∗
0 (�r1, �r2 . . . ; �R1, �R2 . . .)TN( �P1, . . . , �PN )

× φ0(�r1, �r2 . . . ; �R1, �R2 . . .). (20)

It is not pointless to remind that in the framework of the Born–
Oppenheimer approximation (slightly cruder than the adiabatic
one), H ′

0,0 is neglected all together in solving the nuclear
Schrödinger equation for χ(e)v and, as a consequence, in the
potential term VN too.

It is now straightforward to prove that equation (15)
coincides with its standard counterpart, namely with equa-
tion (18), if φ0(�r1, �r2 . . . ; �R1 + s Q̂, �R2 . . .) is replaced by
φ0(�r1, �r2 . . . ; �R1, �R2 . . .). As for the first GRS correction, in
order to try reducing equation (16) to equation (19), one ob-
viously has to make use of the same approximation as above.
However this is not enough: an additional and coarse assump-
tion has to be made too. According to the well-known molecu-
lar virial theorem [21], one can perform the electronic average
on the full potential energy of the molecule obtaining

〈φ0|V |φ0〉 = 2We=0 +
∑

i

�Ri · �∇ �Ri
We=0, (21)

which has to be compared to VN = We=0 + H ′
0,0, employed

in equation (19). The equivalence between the two functions,
even neglecting the small adiabatic correction, is evidently
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false, since We=0( �R1, �R2 . . .) is not in general a homogeneous
function of degree −1 (e.g. the Morse potential).

Giving up to the constraints that in NCS the final
molecular states have to satisfy the adiabatic approximation,
some empirically observable differences have already been
produced in the formulae for the asymptotic scattering law
and, even more, for the first GRS correction to it. However,
in order to gain a deeper physical understanding of our
result for F̃0(s, Q̂), it is useful to translate this into the
momentum-space language. The relationship between the
West-transformed intermediate scattering function and the 1st-
nucleus momentum distribution [20], N1( �P1), is simply given
by

N1( �P1) = 1

8π3

∫
d �X exp(−i �X · �P1)F̃0(X, X̂), (22)

so that the 1st-nucleus mean kinetic energy 〈T1〉 reads

〈T1〉 =
∫

h̄2 P2
1

2M1
N1( �P1) d �P1 = − h̄2

2M1
[∇2

�X F̃0(X, X̂)] �X=0.

(23)
Thus equations (15) and (18) give rise to two different
estimates of the single-nucleus momentum distribution,
namely

N1( �P1) = 1

8π3

∫
d �X exp(−i �X · �P1)

×
∫

d �R1 · · ·
∫

d �RN χ
(0) ∗
0 ( �R1, �R2 . . .)

× χ
(0)
0 ( �R1 + �X , �R2 . . .)

∫
d�r1 · · ·

×
∫

d�rn φ
∗
0 (�r1, �r2 . . . ; �R1, �R2 . . .)

× φ0(�r1, �r2 . . . ; �R1 + �X , �R2 . . .), (24)

and

N (st)
1 ( �P1) = 1

8π3

∫
d �X exp(−i �X · �P1)

∫
d �R1 · · ·

×
∫

d �RN χ
(0) ∗
0 ( �R1, �R2 . . .)χ

(0)
0 ( �R1 + �X , �R2 . . .), (25)

respectively. From these two equations, after some algebraic
manipulation, one can extract the 1st-nucleus mean kinetic
energy in the framework of two approximations:

〈T1〉 = − h̄2

2M1

∫
d �R1 · · ·

∫
d �RN χ

(0) ∗
0 ( �R1, �R2 . . .)

×
[
∇2

�R1
χ
(0)
0 ( �R1, �R2 . . .)+ χ

(0)
0 ( �R1, �R2 . . .)

∫
d�r1 · · ·

×
∫

d�rn φ
∗
0 (�r1, . . . ; �R1, . . .)∇2

�R1
φ0(�r1, . . . ; �R1, . . .)

]
;

(26)

〈T1〉(st) = − h̄2

2M1

∫
d �R1 · · ·

×
∫

d �RN χ
(0) ∗
0 ( �R1, �R2 . . .)∇2

�R1
χ
(0)
0 ( �R1, �R2 . . .). (27)

It is immediate to verify that the difference between 〈T1〉
and 〈T1〉(st) is just the adiabatic correction for the 1st-nucleus

averaged over the nuclear coordinates:

〈T1〉 − 〈T1〉(st) = −h̄2

2M1

∫
d �R1 · · ·

∫
d �RN

∫
d�r1 · · ·

×
∫

d�rn |χ(0)0 ( �R1, �R2 . . .)|2φ∗
0 (�r1, �r2 . . . ; �R1, �R2 . . .)

× ∇2
�R1
φ0(�r1, �r2 . . . ; �R1, �R2 . . .). (28)

Thus we have found that the standard NCS theory is not
only potentially imprecise in describing the single-nucleus
momentum distribution, given the absence of the electronic
terms, but even the N1( �P1)-second moment (proportional to
the single-nucleus mean kinetic energy) might be slightly
underestimated because of the lack of any averaged adiabatic
correction.

In addition to this, another important result can be actually
extracted from our calculation, namely the first two GRS-terms
of the non-adiabatic correction to the NCS response function
F(y, �Q), taken to be the one-dimensional Fourier transform of
F̃(s, �Q):

F(y, �Q) = 1

2π

∫ ∞

−∞
ds exp(−iys)F̃(s, �Q). (29)

After defining the non-adiabatic correction to the NCS
response function as F(y, �Q) − F (st)(y, �Q), one can expand
it following equation (13) and write

F(y, �Q)− F (st)(y, �Q)
=

∞∑
k=0

(
M1

h̄2 Q

)k

[Fk(y, Q̂)− F (st)
k (y, Q̂)], (30)

where, as reported earlier, the only approximation involved is
the assumed adiabaticity of the molecular ground state. Of the
equation above, we actually know the first two terms (namely
k = 0 and 1), given by the Fourier transforms of the differences
between equations (15) and (18), and equations (16) and (19),
respectively. Finally, after a rather longer mathematical
effort [17, 22], it would be also possible to write the k = 2
term.

Our treatment can become even more accurate if the
possible non-adiabaticity of the initial molecular state is taken
into account. In this case �0 can be decomposed in a linear
combination of purely adiabatic states making use of { �R}-
dependent coefficients:

�0( �R1, �R2, . . . �RN , �r1, �r2, . . . �rn) =
∑

e

α(e)( �R1, �R2, . . . �RN )

× φe(�r1, �r2, . . . �rn; �R1, �R2, . . . �RN ), (31)

where the limiting case of an adiabatic�0 is recovered through
α(e) = χ

(0)
0 δe,0. Plugging equation (31) into equations (15)

and (16), one obtains

F̃0(s, Q̂) =
∑
e,e′

∫
d �R1 · · ·

∫
d �RN α

(e′) ∗( �R1, �R2 . . .)

× α(e)( �R1 + s Q̂, �R2 . . .)

∫
d�r1 · · ·

×
∫

d�rnφ
∗
e′(�r1, �r2 . . . ; �R1, �R2 . . .)

× φe(�r1, �r2 . . . ; �R1 + s Q̂, �R2 . . .), (32)

4
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and an analogous expression for F̃1(s, Q̂). Obviously this
approach makes sense only if the number of e, e′-states
included in the sum of equation (32) is small enough.

3. A very simple model of molecular systems: H2

The simplest existing molecule, namely H2, can be used as
a practical example to evaluate the impact of the section 2
findings. Molecular hydrogen has been widely investigated
through NCS, both theoretically and experimentally, so the
standard deep inelastic neutron scattering description of
this system is well-assessed, both in the framework of the
IA [23–25], and making use of the exact final roto-vibrational
states for the two nuclei [26, 27]. This will be very
helpful when comparing results obtained in the framework of
equations (15) and (18).

In what follows we will focus on a single para-hydrogen
molecule, whose orbital wavefunction � is a function of two
nuclear coordinates �r1 and �r2, and of two electronic coordinates
�re,1 and �re,2, all measured in the laboratory frame of reference
(LFoR). This wavefunction can be conveniently factorized in
a centre-of-mass (CoM) term  times an intra-molecular term
�:

�(�r1, �r2, �re,1, �re,2) = ( �Rcm) �( �R, �xe,1, �xe,2), (33)

where �Rcm is the centre-of-mass coordinate (obviously
measured in the LFoR), while �R = �r1 − �r2 is the internuclear
distance, which is of course invariant moving from the LFoR
to the centre-of-mass frame of reference (CoMFoR). As for
the new electronic coordinates �xe,1 and �xe,2, they are defined
with respect to the nuclear middle point (very close but not
coinciding with the CoM) as

�xe,1(2) = �re,1(2) − 1
2 (�r1 + �r2), (34)

and are still surely invariant moving from the LFoR to
the CoMFoR. However, if the electronic coordinates in
the CoMFoR are represented by �r ′

e,1(2) and λ is the ratio
between the electron and the proton mass, then the following
relationships hold in CoMFoR only:

�xe,1 =
(

1 − λ

2

)
�r ′

e,1 − λ

2
�r ′
e,2,

�xe,2 =
(

1 − λ

2

)
�r ′
e,2 − λ

2
�r ′

e,1.

(35)

Being interested in a single H2 molecule, let us focus
on � or, more precisely, on the intra-molecular ground state,
�0. Here we immediately face the problem of the validity of
the Born–Oppenheimer approximation for �0, which has been
dealt with in detail in [28]. However, let us leave it aside for
the moment (it will be discussed in section 4) and assume the
adiabatic approximation to hold:

�0( �R, �xe,1, �xe,2) = φ0(�xe,1, �xe,2; �R) χ(0)0 ( �R), (36)

where the same notation as in equation (15) has been
employed. At this stage the two ground-state wavefunctions,

namely electronic and nuclear, are known in the literature.
The former, spectroscopically labelled with the symbol X1�+

g ,
has been carefully evaluated for example in [29], where it is
expressed as the sum of 249 terms for | �R| ranging from 0.1
to 12.0 bohr (i.e. 0.053–6.350 Å). Once φ0 is known together
with its energy eigenvalue (both parametrically dependent on
�R), the χ(0)0 state can be directly obtained by solving the

nuclear Schrödinger equation, which should also include, if
the Born–Oppenheimer level of accuracy is not acceptable,
the aforementioned adiabatic correction. The only delicate
point is just the long form taken by this correction once it
is written in the CoMFoR [19]; however, at least for two-
electron diatomic homonuclear molecules, this can be done
without approximations. The H2 nuclear ground state, which
is isotropic, is generally expressed as

χ
(0)
0 ( �R) = (4π)−1/2 1

R
u0,0(R), (37)

where u0,0(R) is the solution of a one-dimensional (reduced)
Schrödinger equation and is labelled with ν = 0 and j = 0, the
vibrational and rotational quantum numbers, respectively. If a
high level of accuracy is not needed, as in the present study,
a simple form for u0,0(R) can be obtained from the Morse
potential ground state [30]:

u0,0(R) = N0,0 exp(−ξ/2) ξ s, (38)

where

ξ =
(

2
√

2μD

αh̄

)
exp[−α(R − R0)], (39)

and where

s =
(√

2μD

αh̄

)
− 1

2
. (40)

The above symbols have a simple physical meaning: N0,0 is
a normalization constant, μ is the two-proton reduced mass,
R0 is the equilibrium internuclear distance, while D and α,
two parameters characterizing (together with R0) the Morse
potential VN,M (R), represent the potential well depth and
curvature, respectively:

VN,M (R) = D{exp[−2α(R − R0)] − 2 exp[−α(R − R0)]}.
(41)

Making use of reduced intra-molecular wavefunction u0,0(R),
and assuming a simple Maxwell–Boltzmann distribution
for the molecular CoM velocities, it is possible to write
down explicitly the West-transformed intermediate scattering
functions of equations (18) and (19) in the framework of the
standard approach:

F̃ (st)
0 (s) = F̃ (st,cm)

0 (s)
∫ ∞

0
dR

∫ 1

−1

dη

2
u0,0(R)u0,0

×
(√

s2 + R2 − 2s Rη
)

; (42)

F̃ (st)
1 (s) = iF̃ (st,cm)

0 (s)
∫ ∞

0
dR

∫ 1

−1

dη

2
u0,0(R)u0,0

×
(√

s2 + R2 − 2s Rη
)

×
∫ s

0

[
VN,M

(√
ς2 + R2 − 2ς Rη

)

− VN,M

(√
s2 + R2 − 2s Rη

)]
dς, (43)
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Figure 1. Asymptotic term of the West-transformed intermediate
scattering function for gaseous para-hydrogen in the framework of
the standard approach (dotted line), and including the electronic
degrees of freedom (full line). The two calculations are performed at
low temperature (i.e. in the molecular roto-vibrational ground state)
and do not include any centre-of-mass thermal broadening.

where the intermolecular interactions have been neglected (due
to the extremely diluted H2 gas used in the present model), so
that the CoM term is simply given by

F̃ (st,cm)
0 (s) = exp

(
− s2

2

M2
H

3h̄2 〈 �V 2〉
)
, (44)

with MH being the proton mass and 〈 �V 2〉 the mean square
CoM velocity. Needless to say that the Q̂ dependence has
been dropped because of the isotropic character of this model.
Numerical results from equations (42) and (43) are reported,
respectively, in figures 1 and 2 in the case of 〈 �V 2〉 = 0, while
their Fourier transforms, F (st)

0 (y) and F (st)
1 (y), respectively, in

figures 3 and 4.
The inclusion of the electronic degrees of freedom in

the asymptotic term of the West-transformed intermediate
scattering function, as in equation (15), can be achieved in H2

via the f (s Q̂, �R) function:

f (s Q̂, �R) =
∫

d�xe,1

×
∫

d�xe,2 φ
∗
0 (�xe,1, �xe,2; �R)φ0(�xe,1, �xe,2; �R + s Q̂), (45)

which in a diatomic molecule is actually a function of R,
s, and η only: f (s, R, η). Plugging equation (45) into
equation (42), one obtains the H2 asymptotic term of the West-
transformed intermediate scattering function in the framework
of the present approach including the electronic degrees of
freedom:

F̃0(s) = F̃ (st,cm)
0 (s)

∫ ∞

0
dR

×
∫ 1

−1

dη

2
f (s, R, η)u0,0(R)u0,0

(√
s2 + R2 − 2s Rη

)
,

(46)

where once again the intermolecular interactions have been
neglected. A similar treatment can be applied to the first GRS

Figure 2. First final state effect term of the West-transformed
intermediate scattering function for gaseous para-hydrogen in the
framework of the standard approach (dotted line), and including the
electronic degrees of freedom (full line). A third calculation, based
on the Sears and Glyde model for final state effects (see the main
text), is also plotted as a dashed line. The three calculations are
performed at low temperature (i.e. in the molecular roto-vibrational
ground state) and do not include any centre-of-mass thermal
broadening. In the inset the ratios between the first two functions of
the main figure and their respective low-s limits are reported (using
the same graphical notation as the main picture).

Figure 3. Asymptotic term of the West-scaled response function for
gaseous para-hydrogen in the framework of the standard approach
(dotted line), and including the electronic degrees of freedom (full
line). The two calculations are performed at low temperature (i.e. in
the molecular roto-vibrational ground state) and do not include any
centre-of-mass thermal broadening.

term of the final state effect correction:

F̃1(s) = iF̃ (st,cm)
0 (s)

∫ ∞

0
dR

×
∫ 1

−1

dη

2
u0,0(R)u0,0

(√
s2 + R2 − 2s Rη

)

×
∫ s

0
[U(ς, R, s, η)− U(s, R, s, η)] dς, (47)

where the new intra-molecular potential function U , following
equation (17), is composed of two parts: one purely nuclear,

6
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Figure 4. First final state effect term of the West-scaled response
function for gaseous para-hydrogen in the framework of the standard
approach (dotted line), and including the electronic degrees of
freedom (full line). A third calculation, operated similarly to the first
but using LCAO-approximated H2 parameters, is also plotted as a
dash-dotted line. The three calculations are performed at low
temperature (i.e. in the molecular roto-vibrational ground state) and
do not include any centre-of-mass thermal broadening.

and the other describing the electron–nucleus Coulomb
interaction:

U(ς Q̂, �R, s Q̂) = f (s Q̂, �R) e2

4πε0| �R + ς Q̂|
−

∫
d�xe,1

∫
d�xe,2φ

∗
0 (�xe,1, �xe,2; �R)

×
2∑

j=1

2∑
i=1

e2

4πε0|�xe, j + (−)i( �R/2 + ς/2 Q̂)|
× φ0(�xe,1, �xe,2; �R + s Q̂). (48)

It is worthwhile to note that, as already written in equation (47),
U(ς Q̂, �R, s Q̂) is a function of ς , R, s, and η only:
U(ς, R, s, η).

Considering the exemplificative character of the present
calculations, it is not pointless to use a very crude
approximation of the electronic wavefunction φ0(�xe,1, �xe,2; �R),
namely its simplest MO-LCAO form [31]:

φ0(rA1, rB1, rA2, rB2; R) = 1

2 + 2I (R)
× (ψ1s(rA1)+ ψ1s(rB1))(ψ1s(rA2)+ ψ1s(rB2)), (49)

with rA1(2) = | �R/2 + �xe,1(2)|, rB1(2) = | �R/2 − �xe,1(2)|, I (R)
being the overlap integral, and ψ1s being a 1s Slater-type
orbital [31]:

ψ1s(r) = 1

π1/2

(
Z∗

a0

)3/2

exp

(
− Z∗r

a0

)
, (50)

where a0 represents the Bohr radius and Z∗ = 1.197. After
some straightforward algebraic manipulations, one writes a
MO-LCAO expression for f (s, R, η):

f (s, R, η) =
(

I (s/2)+ I (l)

1 + I (R)

)2

, (51)

where l = √
R2 + s2/4 + sηR, and I (x), the so-called

overlap integral [32], reads

I (x) = exp

(
− Z∗x

a0

) [
1 + Z∗x

a0
+ 1

3

(
Z∗x

a0

)2
]
. (52)

As for the intra-molecular potential function U , the MO-LCAO
expression reads

U(ς Q̂, �R, s Q̂) = e2

4πε0

I (s/2)+ I (l)

(1 + I (R))2

{
I (s/2) + I (l)

| �R + ς Q̂|
− 2Z∗

a0

[
g

(
ς

2
Q̂ + �R,

(
ς

2
+ s

2

)
Q̂ + �R

)

+ g

(
ς

2
Q̂,

(
ς

2
− s

2

)
Q̂

)

+ g

(
ς

2
Q̂ + �R,

(
ς

2
− s

2

)
Q̂

)

+ g

(
ς

2
Q̂,

(
ς

2
+ s

2

)
Q̂ + �R

)]}
, (53)

where g(�x, �y) is a three-centre Slater-type integral, and
depends only on x , y and x̂ · ŷ:

g(�x, �y) = 1

π

(
Z∗

a0

)2 ∫
d�r r−1

× exp

[
− Z∗

a0
(|�r + �x | + |�r + �y|)

]
� g(0, 0), (54)

while g(0, 0) = 1 and represents the limit of R−1 − J (R)
(J (R) being the well-known Coulomb integral [32]) for R
going to zero.

Despite the simplicity of the LCAO orbitals in equa-
tions (49) and (50), the combined implementation of equa-
tions (47) and (53) is a tremendous numerical task since a six-
dimensional integration is required for every s value. However,
we have discovered (after some careful checks) that in our sys-
tem equation (16) can be safely approximated by

F̃1(s, Q̂) � iF̃ (st,cm)
0 (s)

∫
χ
(0) ∗
0 ( �R)χ(0)0 ( �R + s Q̂)

× 〈φ0|
∫ s

0
dς [V ( �R + ς Q̂, �xe,1, �xe,2)

− V ( �R + s Q̂, �xe,1, �xe,2)]|φ0〉 f (s Q̂, �R) d �R, (55)

which, making use of equations (10) and (21), can be more
easily evaluated. Numerical results for F̃0(s) and F̃1(s)making
use of the MO-LCAO approximation are reported in figures 1
and 2, respectively, always in the case of 〈 �V 2〉 = 0. In
addition their Fourier transforms, F0(y) and F1(y), are plotted
in figures 3 and 4, respectively.

4. Discussion of the H2 calculation and conclusions

The calculation results for the asymptotic part of the response
function, F0(y), evaluated with and without the inclusion of
the electronic degrees of freedom, deserve little comment:
the electronic term f (s, R, η) acts like a small damping
factor on F̃0(s) (see figure 1), and this appears, after Fourier
transforming, as a sort of convolution in the y-space for a
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modest broadening function (see figure 3). The physical
meaning of this effect is not difficult to explain: the
nuclear displacement, s, induced by the neutron scattering
process, gives rise to a perturbed electronic wavefunction,
whose overlap with its unperturbed equivalent (reported in
equation (45)), is slightly lower than the unity and decreases
as s grows. This terms has to be thought as additional to
the standard overlap of the perturbed and unperturbed nuclear
wavefunctions (written in equation (42)), i.e., as mentioned
above, like a damping factor.

On the contrary the first GRS correction term needs a
quite longer and detailed discussion, since the inclusion of the
electronic degrees of freedom shows to play a relevant role.
In figure 2, it is possible to fully appreciate the differences
between F̃1(s) and F̃ (st)

1 (s): the former is broader and peaked
at a slightly lower s value, but, above all, exhibits the opposite
sign with respect to the latter. One might think of possible
numerical errors in the implementation of equations (47)
and (53), but this is not the case, since the following low-s
limit is satisfied [33]:

lim
s→0

F̃1(s) = iAF̃0(s)s
3, (56)

with A = 1126.0 meV Å−2. Naturally the same low-s
behaviour is observed in F̃ (st)

1 (s), with a slightly different

value of A (A = 938.1 meV Å
−2

), but exhibiting the same
sign. Both functions are reported in the inset of figure 2.
So different reasons have to be found in order to explain
the large difference between the two final state effect terms.
Another point which is worth considering is the degree of
accuracy of the electronic LCAO wavefunction employed in
the present study (see equations (49) and (50)). It might be
considered slightly too coarse since it yields the following H2

Morse parameters: R0 = 0.732 Å and D = 3.47 eV, to be
compared to the experimental ones: R0 = 0.742 Å and D =
4.75 eV [34]. However, making use of the aforementioned
LCAO coarse parameters in the framework of equations (41)
and (43), one obtains F (st)

1 (y) which is quite similar to the
more accurate one, in no way exhibiting the feature observed
in F1(y) (see figure 4). Thus, it is possible to conclude that
the large discrepancies between the two final state effect terms
F̃ (st)

1 (s) and F̃1(s) (and consequently F (st)
1 (y) and F1(y)) have

a genuine physical character. In addition, it is worthwhile to
observe the widely used first term, F̃ (SG)

1 (s), of the final state
effect corrections due to Sears [35] and Glyde [36]:

F̃ (SG)
1 (s) = i〈∇2VN,M (R)〉 s3

36
F̃0(s). (57)

This term has been evaluated using the Laplacian of the
standard Morse potential (R0 = 0.742 Å, D = 4.75 eV,
and α = 1.9407), with the inclusion of no electronic degrees
of freedom, and is reported in figure 2. In spite of being
rigorously correct only in the limit of small s values, as seen in
equation (56), for larger ones F̃ (SG)

1 (s) becomes closer to F̃1(s)
than to F̃ (st)

1 (s), at least as far as the general functional trend is
concerned.

In order to provide a practical example of the differences
implied by the two calculation methods, we have also

Figure 5. West-scaled response function for para-hydrogen vapour at

Q = 800 Å
−1

in the framework of the standard approach (dotted
line), and including the electronic degrees of freedom (full line). The
two calculations are performed at low temperature (i.e. in the
molecular roto-vibrational ground state), but include a
centre-of-mass thermal broadening corresponding to T = 20 K.

evaluated the full West-scaled response function (i.e. the
Fourier transform of F̃(s, �Q), labelled F(y, �Q)) for H2, since
only this quantity is experimentally accessible via NCS. The
calculation has been performed at a very high momentum
transfer value, namely Q = 800 Å

−1
, because exclusively

the first final state effect term was available and, as shown
in [26, 27], the asymptotic scattering regime is reached very
slowly in the case of molecular hydrogen. We are aware
that this selected momentum transfer value is presently not
accessible by the existing NCS spectrometers; however the
report on some pioneering low-resolution experiments with
KeV neutrons [37] makes our calculations not too distant from
a possible practical testability. The results are reported in
figure 5 for two cases: in the framework of the standard
approach, and including the electronic degrees of freedom.
The differences between these two response functions are not
large, but still clearly observable. It is worth noting that the
two isotropic F(y, Q) are both calculated in the para-hydrogen
roto-vibrational ground state, but include a realistic centre-of-
mass thermal broadening, as in equation (44), corresponding
to a diluted vapour kept at a temperature of T = 20 K.

In conclusion, we have clearly shown that the usual
treatment of deep inelastic neutron scattering from molecular
systems implicitly assumes the validity of the adiabatic
approximation in both the initial and final molecular states.
In addition, since this approximation has been recently
questioned in order to explain some anomalous experimental
results, we have proposed a calculation scheme able to get rid
of the adiabatic assumption in the molecular states after the
scattering process. This scheme generalizes the well-known
Gersch–Rodriguez–Smith approach explicitly including the
electronic degrees of freedom, and provides analytical
formulae for the asymptotic response function and for the first
final state effect correction. In order to understand the physical
meaning of these two expressions, a practical calculation has
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been performed on the simplest existing molecule: H2, making
use of approximate Morse potential nuclear wavefunctions and
LCAO electronic orbitals. Results have come out of particular
interest, showing an asymptotic term very close to the standard
one, but slightly broadened because of the perturbation of
the electronic wavefunction induced by the neutron scattering
process via a non-adiabatic mechanism. On the contrary, the
first final state effect terms (those proportional to the inverse of
the momentum transfer), evaluated according to the Gersch–
Rodriguez–Smith approach, exhibit large mutual discrepancies
if they are evaluated using the semi-empirical internuclear
potential (e.g. the Morse potential) or including electronic
orbitals and Coulomb interactions. This fact, which surely
deserves further clarification in future studies, suggests at the
moment some caution in the use of the Gersch–Rodriguez–
Smith approach in molecular systems like in [18]. In addition,
keeping in mind the results reported in figure 2, it is not
impossible to argue that the practical success of the correction
method due to Sears and Glyde (currently used in almost all
the NCS experiments [1]) is actually based on the role of the
electronic degrees of freedom in neutron Compton scattering.
Last but not least, it is important to stress that the present study,
although originated by the proposed non-Born–Oppenheimer
mechanism devised to explain anomalous NCS, is not directly
related to this problem. The reason for this disconnection
is simple: the aforementioned mechanism is based on the
existence of isolated peaks (i.e. not following the exact West
scaling) caused by the excitation of distinct electronic levels.
This electronic fine structure is indeed contained in our model
of equation (12), but, in order to be accurately reproduced,
many terms of the Gersch–Rodriguez–Smith expansion in
equation (13) are needed. Unfortunately at the moment only
two terms are explicitly available. From a more physical point
of view it is possible to observe that treating the response
function through the Gersch–Rodriguez–Smith expansion (up
to the second term), one implicitly assumes that nuclear recoil
is so quick that even electrons are almost ‘frozen’ in their initial
positions (we say ‘almost’ because the first correction to this
purely asymptotic behaviour is actually included). Electronic
transitions are indeed possible (since the internuclear distance
changes while the electronic positions are practically ‘frozen’),
but the overall effect looks very weak because Q is so large
that even the electronic scattering features coalesce in a single
peak in the y space. However, this scenario is still very
distant from the eVS/VESUVIO regime [38] (30 Å

−1
< Q <

200 Å
−1

), where discrete electronic excitations could occur,
well separated from the main H recoil peak.
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